Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.15.480546

ABSTRACT

SARS-CoV-2 Omicron variant of concern (VOC) contains fifteen mutations on the receptor binding domain (RBD), evading most neutralizing antibodies from vaccinated sera. Emerging evidence suggests that Omicron breakthrough cases are associated with substantially lower antibody titers than other VOC cases. However, the mechanism remains unclear. Here, using a novel geometric deep-learning model, we discovered that the antigenic profile of Omicron RBD is distinct from the prior VOCs, featuring reduced antigenicity in its remodeled receptor binding sites (RBS). To substantiate our deep-learning prediction, we immunized mice with different recombinant RBD variants and found that the Omicron's extensive mutations can lead to a drastically attenuated serologic response with limited neutralizing activity in vivo, while the T cell response remains potent. Analyses of serum cross-reactivity and competitive ELISA with epitope-specific nanobodies revealed that the antibody response to Omicron was reduced across RBD epitopes, including both the variable RBS and epitopes without any known VOC mutations. Moreover, computational modeling confirmed that the RBS is highly versatile with a capacity to further decrease antigenicity while retaining efficient receptor binding. Longitudinal analysis showed that this evolutionary trend of decrease in antigenicity was also found in hCoV229E, a common cold coronavirus that has been circulating in humans for decades. Thus, our study provided unprecedented insights into the reduced antibody titers associated with Omicron infection, revealed a possible trajectory of future viral evolution and may inform the vaccine development against future outbreaks.


Subject(s)
Neoplasms by Site
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-877980.v1

ABSTRACT

Predicting the functional sites of a protein from its structure, such as the binding sites of small molecules, other proteins or antibodies sheds light on its function in vivo. Currently, two classes of methods prevail: Machine Learning (ML) models built on top of handcrafted features and comparative modeling. They are respectively limited by the expressivity of the handcrafted features and the availability of similar proteins. Here, we introduce ScanNet, an end-to-end, interpretable geometric deep learning model that learns features directly from 3D structures. ScanNet builds representations of atoms and amino acids based on the spatio-chemical arrangement of their neighbors. We train ScanNet for detecting protein-protein and protein-antibody binding sites, demonstrate its accuracy - including for unseen protein folds - and interpret the filters learned. Finally, we predict epitopes of the SARS-CoV-2 spike protein, validating known antigenic regions and predicting previously uncharacterized ones. Overall, ScanNet is a versatile, powerful, and interpretable model suitable for functional site prediction tasks. A webserver for ScanNet is available from http://bioinfo3d.cs.tau.ac.il/ScanNet/

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.05.459013

ABSTRACT

Predicting the functional sites of a protein from its structure, such as the binding sites of small molecules, other proteins or antibodies sheds light on its function in vivo . Currently, two classes of methods prevail: Machine Learning (ML) models built on top of handcrafted features and comparative modeling. They are respectively limited by the expressivity of the handcrafted features and the availability of similar proteins. Here, we introduce ScanNet, an end-to-end, interpretable geometric deep learning model that learns features directly from 3D structures. ScanNet builds representations of atoms and amino acids based on the spatio-chemical arrangement of their neighbors. We train ScanNet for detecting protein-protein and protein-antibody binding sites, demonstrate its accuracy - including for unseen protein folds - and interpret the filters learned. Finally, we predict epitopes of the SARS-CoV-2 spike protein, validating known antigenic regions and predicting previously uncharacterized ones. Overall, ScanNet is a versatile, powerful, and interpretable model suitable for functional site prediction tasks. A webserver for ScanNet is available from http://bioinfo3d.cs.tau.ac.il/ScanNet/

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.04.429751

ABSTRACT

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and Nucleocapsid (N) proteins from SARS-CoV-2, and obtained cross-link sets with an average density of one cross-link per twenty residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites, and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and inter-domain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryo-EM structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.

5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.264333

ABSTRACT

The outbreak of COVID-19 has severely impacted global health and the economy. Cost-effective, highly efficacious therapeutics are urgently needed. Here, we used camelid immunization and proteomics to identify a large repertoire of highly potent neutralizing nanobodies (Nbs) to the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD). We discovered multiple elite Nbs with picomolar to femtomolar affinities that inhibit viral infection at sub-ng/ml concentration, more potent than some of the best human neutralizing antibodies. We determined a crystal structure of such an elite neutralizing Nb in complex with RBD. Structural proteomics and integrative modeling revealed multiple distinct and non-overlapping epitopes and indicated an array of potential neutralization mechanisms. Structural characterization facilitated the bioengineering of novel multivalent Nb constructs into multi-epitope cocktails that achieved ultrahigh neutralization potency (IC50s as low as 0.058 ng/ml) and may prevent mutational escape. These thermostable Nbs can be rapidly produced in bulk from microbes and resist lyophilization, and aerosolization. These promising agents are readily translated into efficient, cost-effective, and convenient therapeutics to help end this once-in-a-century health crisis.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL